
Synthetic Algebraic Geometry

Matthias Hutzler
University of Gothenburg

Interactions of Proof Assistants and Mathematics
Regensburg, 2023-09-19

X 3 + X 2 − Y 2 = 0
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The spectrum of an algebra

Let R be a ring.

Definition

If A is a finitely presented R-algebra, we
define:

Spec(A) := HomR-Alg(A,R)

Examples

Spec(R[X ]) = R

Spec(R[X ]/(P)) = { x : R | P(x) = 0 }
Spec(A⊗ B) = Spec(A)× Spec(B)

Axiom (SQC)

For every finitely presented R-algebra A, the
following canonical map is bijective:

A → RSpec(A)

This is counter-classical

(∀x :R. x = 0 ∨ x ̸= 0) =⇒ R = 0
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The standard model of synthetic algebraic geometry

The standard model is:

the topos Sh(Ringopfp , JZar)

with its structure sheaf OZar

(If we are satisfied with first-order logic /
higher-order logic.)

the ∞-topos Sh∞(Ringopfp , JZar)

(If we want to use HoTT.)

a cubical sets variant of
Sh(Ringopfp , JZar)

(If we want to be constructive in the
meta-theory.)

Axiom (Loc)

R is a local ring. That is: 0 ̸=R 1 and
∀x :R. (x invertible) ∨ (1− x invertible).

Axiom (SQC)

For every finitely presented R-algebra A, the
following canonical map is bijective:

A → RSpec(A)

Axiom (Z-choice)

Every surjection π locally has sections:

E

D(fi ) Spec(A)

π

si
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A secret connection between two equations

X 3 + X 2 − Y 2 = 0 1 + Z − Y 2Z = 0

X 3 + X 2Z − Y 2Z = 0

Z = 1 X = 1

This is a homogenous equation.
Its solutions are best described as ratios [x : y : z ].
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Projective space as a scheme

Definition

Pn := (Rn+1 \ {0})/∼

where x ∼ y :⇔ ∃a:R×. ax = y .

Definition

A set X is a scheme if it can be covered by
finitely many subsets Ui ⊆ X such that:

Every Ui is of the form Spec(A).

For all i and x : X , there exist
a1, . . . , an : R such that

x ∈ Ui ⇔ (a1 inv.) ∨ · · · ∨ (an inv.)

Example

Define Ui ⊆ Pn by

[x ] ∈ Ui :⇔ (xi invertible).
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Synthetic mathematics and computer formalization

Formalizing synthetic theory

state axioms

make definitions

deduce results
(here: needs constructive algebra)

Formalizing models (?)

topos theory / ∞-topos theory

define domain-specific language / type
theory

provide sound interpretation
(here: needs some algebra)

deduce external results from synthetic
proofs

Vision

synthetic language = external language + axioms
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Conclusion

Synthetic languages are powerful abstraction layers.

Please formalize constructively.

Algebraic geometry is so much fun when you do it synthetically!
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Preprint:
https://arxiv.org/abs/2307.00073

(Very partial) formalization:
https://github.com/felixwellen/synthetic-geometry
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